

SNO+ EXPERIMENT UPDATE

J. MANEIRA LIP LISBON, PORTUGAL

> SNOLAB EXPERIMENT ADVISORY COMMITTEE MEETING SUDBURY, JULY 31, 2024

THE SNO+ EXPERIMENT

Repurposing the Sudbury Neutrino Observatory (SNO) detector

Rope system Hold-up and -down Low Radioactivity

Acrylic Vessel (AV) 12 m diameter

> Ultra-Pure Water

J. Maneira (LIP)

2 km underground $\sim 70 \text{ muons/day}$

~9300 PMTs

Purification plant

Target Material

- 1. Water: 905 tonnes
- 2. LAB Scintillator: 780 tonnes
- 3. Tellurium loading: +3.9 tonnes

THE SNO+ EXPERIMENT

Solar Neutrinos

Reactor Neutrinos

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

Supernova Neutrinos + exotics

Geo-Neutrinos

eutrinoless uble-Beta Decay

SNO+ TIMELINE

2021 2017 2018 2019 2020

Water phase

- High Rn
- Low Rn

Partial fill phase Scintillator over water. Stop in fill due to Covid.

52

2025

Те

Tellurium

2022 2023 2024

Scintillator phase

- Low PPO
- Nominal PPO
- Added bis-MSB

Next: Telluriumloaded phase

SNO+ PERFORMANCE

- Water Phase
 - Extensive calibrations: well-tuned detector model
 - Constraints on external backgrounds: smaller than nominal
- Scintillator Phase
 - Tracking background and light levels throughout operations
 - High but decreasing level of Po210
 - BiPo214/212 segments of Uranium and Thorium chains at low level:
 - Eq. 238 U ~ 4.3×10^{-17} g/g S' S
 - Eq. 232 Th $\sim 5.3 \times 10^{-17}$ g/g

0.7

0.6

SNO+ Experiment Update - SNOLAB EAC - July 2024

PREVIOUS RESULTS

DIRECTIONALITY IN SCINTILLATOR

SNO+ Collab., <u>Phys.Rev.D 109 (2024) 7, 072002</u>

- Slow scintillation leads to good separation between Cherenkov and scintillation photons
- Early data with low PPO (0.6 g/L)
 - Reasonable light yield (300 pe/MeV)
 - Slow timing $\tau = 13.5$ ns (first comp.)

J. Maneira (LIP)

- ⁸B solar neutrino analysis
 - Data from partial fill and early scint phases (23 and 15 kt-days)

First event-by-event reconstruction of direction in high light yield scintillator!

SNO+ Experiment Update - SNOLAB EAC - July 2024

REACTOR NEUTRINOS IN WATER

- SNO+ exploited good trigger and light collection performance
- AmBe source calibration showed neutron efficiency of 50%

J. Maneira (LIP)

Detected 2.2 MeV gammas from neutron capture, in coincidence with prompt signal.

First detection of antineutrinos from far reactors with a water Cherenkov detector

SNO+ Experiment Update - SNOLAB EAC - July 2024

NEW RESULTS

SOLAR NEUTRINOS, WATER PHASE

- New analysis of 126.6 kt.days, including 190.3 days of low background data
 - Radon in water $\sim 6 \times 10^{-15} \text{ gU/g}$
 - Lowest background for water Cherenkov detectors > 5 MeV: 0.32 ± 0.07 ev/kt.days

J. Maneira (LIP)

- Results
 - 3.5 MeV threshold, but large uncertainties in first bins
 - Best-fit flux consistent (inc. oscillations) with other experiments, and HZ and LZ solar models

SNO+ Experiment Update - SNOLAB EAC - July 2024

SOLAR NEUTRINOS, SCINT. PHASE

- Analysis of ⁸B ES interactions in 138.9 live days of scint. data
- Fitted oscillation parameters compatible with global fits

J. Maneira (LIP)

Strict fiducial volume cut opens prospects for future sensitivity < 3 MeV!²³²Th still dominates 3-5 MeV regions, but

multisite discriminant will help

CHARGED CURRENT ON CARBON-13

As yet unobserved reaction of electron neutrinos on Carbon-13

13N

e

Only 1.1% isotopic abundance, but cross section $\sim 12 \times$ higher than ES at ⁸B v energies

J. Maneira (LIP)

 $\nu_{e} + {}^{13}C$

- Cosmogenic backgrounds from ¹¹Be: negligible at SNOLAB depth
- Dominant accidental backgrounds determined by data-driven method
 - Randomly pick fake prompt, then search for delayed signal candidates

CC ON CARBON-13, RESULTS

- Cuts optimised prior to "blind box" opening:
 - Fiducial volume: R < 5.3 m
 - Prompt energy: $5.0 \le E(e) \le 15.0 \text{ MeV}$
 - Delayed energy: $1.14 \le E(e^+) \le 2.2 \text{ MeV}$
 - $\Delta R < 0.36 \text{ m}$
 - $0.01 < \Delta T < 24 \text{ min}$
 - Likelihood ratio analysis
 - Wider cuts on Delayed energy, ΔR , ΔT
 - Likelihood ratio discriminant> 4

EXPECTED	BOX	LIKELIHC
BACKGROUND	0.31	0.17
SIGNAL	1.83	1.79

150.51 live days

J. Maneira (LIP)

2 events found !

REACTOR ANTINEUTRINOS ANALYSIS

- Following first detection in a water Cherenkov detector, new results from partial and scint phases
- Main background: (α ,n) reactions on ¹³C
 - αs from high rate ²¹⁰Po decays
- Partial fill: 114 t.y exposure, 85 Hz of ²¹⁰Po
 - Stats and background-limited

SUBMITTED TO PRD ARXIV:2405.19700

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

$$\bar{\nu_e} + p \rightarrow e^+ + n \\ n + p \rightarrow^2 H + \gamma(2.2MeV)$$

Prompt spectrum @ SNO+ with sharp features, due to few baselines Potential to shed light on solar-KamLAND tension

REACTOR ANTINEUTRINOS RESULTS

Scint. phase: 286 t.v exposure, 38 Hz²¹⁰Po

- Still stats limited, but lower (α, n) background
- Geo-nu 64+/- 44 TNU, will improve soon with (α,n) classifier
- Unconstrained oscillation fit

SNO+ Experiment Update - SNOLAB EAC - July 2024

PROSPECTS FOR DOUBLE BETA DECAY

TELLURIUM SYSTEMS

Te acid purification (UG)

DDA distillation (surface)

DDA surface to UG transfer

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

Te diol synthesis (UG)

SNO+ DBD SENSITIVITY

- Water phase constrained external backgrounds
- Scintillator phase constrained several internal backgrounds

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

Other expectations based conservatively on raw purity and purification factors

SENSITIVITY, HIGHER LOADINGS

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

SNO+ IN CONTEXT

J. Maneira (LIP)

J. Maneira (LIP)

SNO+ Experiment Update - SNOLAB EAC - July 2024

PTDC/FIS-PAR/2679/2021

EXTRA

Observed events prompt energy: 10.7 and 8.1 MeV

• Likelihood ratio:

- Fiducial volume: R < 5.3 m
- Prompt energy: 5.0 < E(e) < 15.0 MeV
- Delayed energy: $1.0 \le E(e^+) \le 2.2 \text{ MeV}$
- Delta R < 1 m
- 0.01 < Delta T < 60 min
- Likelihood ratio > 4

SNO+ SOLAR WATER PHASE

