Anti-Neutrinos in SNO+: Results and Future Prospects

Ryan Bayes

Queen's University

SNOLAB User's Meeting June 27

Anti-Neutrinos in SNO+:

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Introduction to SNO+

- SNO+ is a multipurpose neutrino detector
 - Primary mission to search for $0\nu\beta\beta$
 - Additional measurements of Solar, Reactor, Geo, Supernova neutrinos accessible
- Detection of neutrons allows for the detection of anti-neutrinos via Inverse Beta Decay (IBD)

New Results from SNO+ Presented at Neutrino 2024

- Final water solar
- Full Fill LS solar
- First indications of Charge Current ⁸B neutrino capture on ¹³C
- Partial fill $\bar{\nu}$
- Full fill $\bar{\nu}$

$\bar{\nu}$ Oscillations

• General representation of neutrino oscillations

$$ar{
u}_{lpha} = \sum_{i=1}^{3} V_{ilpha}ar{
u}_{i}$$

• $\alpha \in \{\mathbf{e}, \mu, \tau\}$

• Probability of electron survival in the limit pertinent to SNO+

$$\mathcal{P}_{ee} pprox (1 - \sin^2 2 heta_{12} \sin^2 \Delta_{21}) \cos^4 heta_{13} + \sin^4 heta_{13}$$

- $\Delta_{21} = 1.267 \Delta m_{12}^2 L/E$ where E [MeV] is the $\bar{\nu}$ energy and L [m] is the distance travelled
- $\Delta m_{12}^2 = m_1^2 m_2^2 \, [\text{eV}^2]$
- Current averages:
 - $\sin^2 \theta_{12} = 0.307 \pm 0.013$
 - $\Delta m^2_{12} = (7.53\pm0.18) imes10^{-5}$ eV 2 (KAMLAND + global solar)
 - But: SK+SNO global solar $\Delta m_{12}^2 = (4.8^{1.3}_{-0.6}) \times 10^{-5} \text{ eV}^2$
- SNO+ can measure both solar and reactor neutrino spectra
 - Resolve the existing tension

Ryan Bayes (Queen's University)

4 / 20

The SNO+ Detector

- 2 km underground
- 12 m diameter acrylic vessel
 - 780 tonnes liquid scintillator
- 9362 inward facing PMTs
- \approx 17 m diameter geodesic support structure
- UPW shielding fills surrounding cavity (external veto)

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

$\bar{\nu}$ at SNO+

- $\bar{\nu}$ can be observed from
 - Reactors
 - Bruce (240 km)
 - Pickering (340 km)
 - Darlington (350 km)
 - Various US reactors
 - Earth (Geo- ν)
 - Core Collapse Supernova
- $\bar{\nu}p \rightarrow e^+n$
 - Threshold of 1.806 MeV
 - n-H capture produces 2.2 MeV γ
 - Positron boosts visible energy by 1 MeV

A D F A B F A B F A B

Validating IBD in Water

Ryan Bayes (Queen's University)

https://doi.org/10.1103/PhysRevC.102.014002

- Deployed neutron (AmBe) source in water
- Demonstrated 50% detection efficiency

Anti-Neutrinos in SNO+:

Event rate [Hz]

10

MeV ys (fit to data) MeV ys (fit to data)

PMT hits

7 8 Radius [m]

.

First observations of reactor neutrinos in water

https://doi.org/10.1103/PhysRevLett.130.091801

- Parallel analyses conducted
 - Likelihood Ratio
 - Boosted Decision Tree
- Demonstrated 3.5 σ evidence of rector $\bar{\nu}$ events in water

9/20

Reactor Neutrino Prediction at SNOLAB

- $2 imes 10^{20} \ ar{
 u}$ per second per GW of thermal power
- Rate from CANDU reactors estimated from hourly IESO data
- Rate from other reactors estimated from monthly averages from IAEA

• Changes in Δm_{12}^2 expected to be significant

Partial Scintillator Fill Data and Results arXiv:2405.19700

Events / 0.4 MeV / 125.4 Days Data Total Prediction (No Oscillation) Total Prediction (With Oscillation) Reactor- \overline{v} ($\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$) α-n Geo-v 10^{-1} 3 6 Prompt Reconstructed Energy (MeV)

27(ln(Likelihood)) 1.2 1.2 1.2

0.8

0.4

0.2 ંર

5

- 114 tonne-years of data
- Log likelihood fit of prompt spectra
 - Individual oscillations for ON reactors
 - Average of reactors at > 1000 km
 - A single spectrum for Geoneutrinos
- θ_{12} fixed to global average

• Best fit:
$$\Delta m^2_{12} = (8.85^{+1.10}_{-1.33}) \times 10^{-5} \text{ eV}^2$$

7

1σ

 ${}^9_{\Delta m^2_{21}}(\times 10^{-5} eV$

Preliminary Reactor $\bar{\nu}$ in Full Scintillator Detector

- Used data collected between April 2022 March 2023
 - Stable running period following PPO addition
- Reduced (α, n) specific activity
 - ²¹⁰Po decays with 138 day half-life
- Improved light yield improves position and energy resolution

Oscillation Measurements

- Improvements in background rejection and statistics clear in stacked plot
- Allows $\Delta m^2_{12}, \sin^2 2\theta_{12}$ fit
- Best fit at $\Delta m^2_{12} = (7.95^{+0.48}_{-0.41}) \times 10^{-5} \ {\rm eV^2}$
- Can approach global average uncertainty in 3 years exposure

13 / 20

Oscillation Measurements

- Improvements in background rejection and statistics clear in stacked plot
- Allows $\Delta m_{12}^2, \sin^2 2\theta_{12}$ fit
- Best fit at $\Delta m^2_{12} = (7.95^{+0.48}_{-0.41}) \times 10^{-5} \ \text{eV}^2$
- Can approach global average uncertainty in 3 years exposure

- ∢ ⊒ →

13 / 20

Solar Neutrino Detection

- Measurement of solar neutrinos in progress
- Elastic electron-neutrino scattering signal

- Complementary oscillation measurement
 - More sensitive to θ_{12}

14 / 20

Combination with Solar neutrino results

• Adding solar data better constrains θ_{12} in addition to Δm_{12}^2

 \bullet Resolves tension in measurements to be consistent with KAMLAND

Ryan Bayes (Queen's University)

Anti-Neutrinos in SNO+:

15 / 20

Combination with Solar neutrino results

• Adding solar data better constrains θ_{12} in addition to Δm_{12}^2

• Resolves tension in measurements to be consistent with KAMLAND

Ryan Bayes (Queen's University)

Anti-Neutrinos in SNO+:

SNOLAB User's Meeting

15 / 20

CC Interactions between ¹³C and ⁸B Solar Neutrinos

Ryan Bayes (Queen's University)

Anti-Neutrinos in SNO+:

SNOLAB User's Meeting

Geo-neutrinos

- \bullet Preliminary measured flux of 64 \pm 44 TNU
- Potential to distinguish between different geological models
- Improvements in (α, n) discrimination will improve sensitivity
- Dedicated measurement forthcoming

Pre-supernova neutrinos

- IBDs provide early Supernova signal
 - Rate expected to increase on the days in advance of a CCSN
 - Online monitoring systems currently functional
- Evaluation made assuming Partial Fill (α, n) rates
 - Expect to improve sensitivity given reduced background
 - Yet to add (α , n) classifier capacity

Pre-SN sensitivity (30) using a 12-hour window

Sensitivity to Supernovae

- SNO+ will saturate for close Supernova
 - · Saturation limit determined by stress testing detector
 - Improved stress test in planning for coming year
- Limits are highly model dependent
- Study of IBD in surrounding water could double the target mass and extend sensitivity

Conclusion

- $\bar{\nu}$ produces a neutron tagged signal from IBD in SNO+
 - Shown to be observable in water with 50% efficiency
- Multiple results in reactor neutrinos and more to come.
 - First Evidence by a pure water Cherenkov detector
 - Observation oscillations in partial scintillator
 - Measurement of oscillations in full scintillator (in progress)
 - $\bullet\,$ Geo-neutrino flux from same fit at 64 ± 44 TNU
 - $\bullet\,$ Combination with solar neutrino measurements in SNO+
- Will contribute to Supernova early warning systems
 - $\bar{\nu}$ signal to arrive long before optical signal
 - Seeking membership in SNEWS2
- New and exciting measurements from SNO+ in progress
 - Solar neutrinos papers in water and scintillator forthcoming
 - $\bullet\,$ CC Interactions between ^{13}C and ^{8}B Solar Neutrinos

・ロト ・ 同ト ・ ヨト ・ ヨト