Investigating the Biological Impact of Sub-Natural Background Radiation: Insights from the REPAIR project

Insights from the REPAIR project

Michel R. Lapointe, Ph.D. Postdoctoral Fellow June 26th, 2024

REPAIR: Researching the Effects of the Presence and Absence of Ionizing Radiation

Natural background Radiation - Context

Location	Annual dose (mSv)		
Ramsar, Iran	Up to 200		
Guarapari, Brazil	Up to 40		
Mamuju, Indonesia	Up to 32		
Kerala, India	Up to 10		
Yangjiang, China	Up to 6		
World Average	2.4		
Canadian Average	2.2		

Natural background radiation

Why study natural background radiation?

Exaggerated Models of Risk

Life sciences laboratory

Life sciences laboratory

Creating a sub-NBR environment:

•Cosmic: SNOLAB

•Terrestrial (Gamma): Lead

•Inhalation (Radon): Air filtration

•Endogenous radioisotopes: Nutritional

restriction*

Life sciences laboratory

Cell Model (CGL1) Experiments

The CGL1 Cell Line

Hybrid human cell line:

- Cross between Hela (cancerous cells) and normal skin fibroblasts
- Normal phenotype
- Genetic damage causes cancerous phenotype transition (neoplastic transformation

FIG. 1. A general timeline of the CGL1 neoplastic transformation assay.

	Surface control	Underground control	Sub-Background	
Particle type	(nGy hr⁻¹)	(nGy hr-1)	(nGy hr-1)	
Gamma	5.78 ± 0.03	7.67 ± 0.01	0.0427 ± 0.0013	
Neutron	4.52 ± 0.04	0.0045 ± 0.0002	0.00169 ± 0.00002	
Muon	55.27 ± 0.4	Negligible	Negligible	
²²² Rn	0.044 ± 0.014	1.45 ± 0.17	0.009 ± 0.011	
⁴⁰ K	2.41 ± 0.19	2.41 ± 0.19	2.41 ± 0.19	
¹⁴ C	0.0175 ± 0.0001	0.0175 ± 0.0001	0.0175 ± 0.0001	
Low LET ^a	63.48 ± 0.62	10.1 ± 0.2	2.47 ± 0.19	
High LET ^b	4.56 ± 0.05	1.45 ± 0.17	0.01 ± 0.01	
Total	68.04 ± 0.67	11.55 ± 0.37	2.48 ± 0.20	
^a Low LET = Gamma, Muon, ⁴⁰ K, ¹⁴ C				
^b High LET = Neu	itron, ²²² Rn			

27-fold decrease

Conclusions:

- Sub-NBR exposure did not significantly alter:
 - growth rates,
 - cell survival,
 - induction of DNA double strand breaks following high dose irradiation
- Sub-NBR exposure did result in significantly increased ALP activity, suggestive of increased neoplastic transformation rates

3 month

4 month

Metabolic activity (alamarBlue) Transcriptomics (NGS)

Metabolic Activity

- Development of a flow-based assay for cellular iALP activity
 - Comparison with conventional transformation assay for validation
 - Detect baseline transformation (~28/1,000,000)

 Development of a flow-based assay for cellular iALP activity

FIN

Acknowledgements

*The entire NOSM Radiobiology Lab Group (past and present members)

Literature cited

Available upon request

Dose Definitions

Absorbed Dose

Absorbed dose is the amount of energy deposited by radiation in a mass.

The mass can be anything: water, rock, air, people, etc. Absorbed dose is expressed in milligrays (mGy).

Equivalent Dose

Equivalent dose is calculated for individual organs. It is based on the absorbed dose to an organ, adjusted to account for the effectiveness of the type of radiation. Equivalent dose is expressed in millisieverts (mSv) to an organ.

Effective Dose

Effective dose is calculated for the whole body.

It is the addition of equivalent doses to all organs, each adjusted to account for the sensitivity of the organ to radiation.

Effective dose is expressed in millisieverts (mSv).

High-NBR areas and life expectancy

Correlative links between natural radiation and life expectancy in the US population

²²²Rn

0.31 (2.5E-68)

0.26(2.8E-49)

Table 3 Stepwise multivariate regression analysis of relative impacts of terrestrial radiation, cosmic radiation and ²²²Rn on life expectancy

		Variables	Males		Females	
			Std. Beta p-value		Std. Beta p-value	
			0.25	< 0.0001	0.27	< 0.0001
tion and ²²² Rn		TR	0.10	< 0.0001	0.11	< 0.0001
Females		CR ²²² Rn-TR	0.22	<0.0001 >0.3	0.15 -	<0.0001 >0.4
Background radiation	²²² Rn	interaction ²²² Rn-CR	_	> 0.08	-0.06	< 0.02
0.26 (8.3E–48) 0.19 (2.0E–26)	0.32 (6.7E–73) 0.27 (1.0E–54)	TR-CR Inter-	-0.09	< 0.005	-	>0.13

Elroei David^D · Roy Bitan · Sharona Atlas · Marina Wolfson · Vadim E. Fraifeld

Males

Table 1 Pairwise and partial correlations of life expectancy with background radiation and ²²²R

The number of counties was n = 3124 for both sexes

Correlation coefficients

with LE

r (p-value) r_{p} (p-value)

r Pearson's correlation coefficient, r_p Partial correlation coefficient

0.27 (5.8E-54)

0.21 (5.6E - 32)

Background radiation

 Table 2 Stepwise multivariate regression analysis of relative
impacts of background radiation and ²²²Rn on life expectancy

Variables Males			Females	
	Std. Beta	p-value	Std. Beta	p-value
BR	0.21	< 0.0001	0.21	< 0.0001
²²² Rn	0.26	< 0.0001	0.27	< 0.0001

The number of counties was n = 3124 for both sexes

Std. Beta standardized beta coefficients

Shielding at SNOLAB

- 2km of rock shielding decreases the muon flux by a factor of 50 million.
- About 60 billion solar neutrinos pass through your thumb nail every second, only two neutrinos will collide with your whole body in your lifetime.

Background

Sources:

- Radon (73%)
 - Alpha decay
- Galactic cosmic radiation (GCR) (11%)
 - Muons production
- Endogenous/internal radiation sources (9%)
 - Beta emitters: C-14 and K-40
- Terrestrial sources (7%)
 - Uranium+Thorium decay series from the soil