The scintillating bubble chamber at SNOLAB

Ben Broerman

sub-keV nuclear recoil detection

- Difficult kinematics of low mass
 DM-nucleon scattering require
 low thresholds ≤ 1 keV
 - Future success here needs particle identification and scalability

Aside:

A demonstrated technology can also go after MeV-scale reactor antineutrinos

B. Broerman

Bubble chambers

- Maintain target fluid in a _ superheated state
- High efficiency @ low n.r. _ threshold,

Fixed P. T

0.2 0.1 0 -0.1 -0.2

acoustic

0.05

60

20

ſ

Counts 40

Limitations with Freons... and solutions

- Threshold detectors: no energy information
- β/γ rejection fails at low thresholds
- Liquid-noble B.C.'s
 - Energy information
 - Higher β/γ rejection than Freons
 - Low threshold, bkg. separation, and scalable

Prototype LXe bubble chamber

B. Broerman

SBC-LAr10 IV assembly @ Fermilab

Trim heaters

SiPM wiring

HDPE castle w/ RTDs, piezos

B. Broerman

Status @ Fermilab

- Hydraulic & thermal system tested
- Assembly complete, moved underground in MINOS tunnel with 100 m overburden

Cameras even see images \rightarrow

2024

- Reassembling, then:
 - Cooldown and LAr filling

B. Broerman

Gas handling

system

MINOS

NearDetector

SBC

SBC-LAr10 goals for SBC-SNOLAB

1) Stable operation

- Homogeneous response across sensitive volume
- Event building: scintillation [ns], acoustic [us], cameras [ms]

2) Gamma calibration

- Confirm no e.r. nucleation at keV-scale
- Investigate e.r. rejection at/below 100 eV
- 3) Nuclear recoil calibration
 - Photoneutron (keV), photon-nucleus scattering
 (< 300 eV), tagged neutron capture (~ 300 eV)

B. Broerman

SBC-LAr10 goals for SBC-SNOLAB

1) Stable operation

- Homogeneous response across sensitive volume
- Event building: scintillation [ns], acoustic [us], cameras [ms]

2) Gamma calibration

- Confirm no e.r. nucleation at keV-scale
- Investigate e.r. rejection at/below 100 eV
- 3) Nuclear recoil calibration
 - Photoneutron (keV), photon-nucleus scattering
 (< 300 eV), tagged neutron capture (~ 300 eV)

B. Broerman

B. Broerman

Next for SBC-SNOLAB @ SNOLAB

- SBC-LAr10 will demonstrate technology and operation
- Refining design for low background SBC-SNOLAB Notable changes:
 - SiPMs, wire management, shield

/ TSSA certified components (feedthroughs, viewports, & cryovalves)

- Unified gas panel
- / PLC cabinet wiring (@ Queen's)
- FBK SiPM bonding (@ TRIUMF)
- TDR in August, then assembly of inner vessel @ SNOLAB

Status of SBC-SNOLAB

- Space allocated u/g
- SNOLAB IV built and tested (2 sets of jars, bellows assemblies, etc.)

- PV and VJ manufacturing, shield design this summer

B. Broerman

Physics potential: dark matter

- Region of interest: 0.1 keV 10 keV n.r. (just bubble, no scintillation)
- 10 kg-year exposure reaches 10⁻⁴³ cm²
 @ 1 GeV/c², tonne-year to neutrino fog
- Fluid flexibility (SI or SD search potential)

12

Conclusion

- SBC has great potential to probe GeV-scale dark matter*
 - Scalable, low threshold detector with background discrimination
- Exciting time for SBC:
 - Commissioning SBC-LAr10 this summer
 - SNOLAB TDR August 2024

SOUTH BEND **Northeastern**

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Drexel

IVERSIDE

- More details:
 - Snowmass white paper: arXiv: 2207.12400
 - Also in: Universe 9 (2023) 8, 346 _

*and CEvNS.

