Thermal Simulations for the Scintillating Bubble Chamber Experiment

Ezri Wyman

SNOLAB User Meeting 2024

Outline

Motivation

- SBC's science needs require two distinct temperatures
 - Superheated region (~130 K):
 - On top
 - Bubbles can form
 - "Cold" region (~90K):
 - On the bottom
 - Bubbles cannot form
 - Impurities can settle out
 - Rougher materials can be used

COMSOL MULTIPHYSICS®

- "Lego" for physics simulations
- Widely used
- Qualitative and quantitative results

(And we had access to a license)

Building a Digital Detector

- Geometry and materials need to be defined
- Different levels of detail characterize different sim iterations
- Dimensions come from engineering drawings and the SOLIDWORKS model

Characterizing Materials

- Some materials (steel and synthetic quartz) are pre-defined in COMSOL
- Others (CF4 and liquid argon) needed to be partially or entirely user defined
- Best available option: fitting existing experimental data
- There's more interesting work to be done here!

Qualitative Results

Velocity Streamline Plot

- Shows continuous flow pathways
- Visual indication of convection loops

Velocity Arrow Plot

- Length of each arrow indicates magnitude
- The tail of each arrow sits at the point for which the velocity is indicated

Temperature Plot

• Preliminary but promising!

Temperature Data From Liquid Argon PV Fill

12

Temperature Data From Liquid Argon PV Fill

Looking at the Temperature Data

Good news:

- Both exponential
- Clear which sensors were where
- Built infrastructure for this kind of comparison

Learning Opportunities:

- VERY different timescales
- Need to implement thermal coupling interference
- t0 needs adjustment
- Bonus good news: some of this will go away automatically in later iterations

Next Steps

- Implementing more of the detector assembly in sim
- Comparing to later engineering runs (and eventually with detector data)
- Iterative improvement!

