

Canadian Nuclear | Laboratoires Nucléaires Laboratories Canadiens

Establishing Transition-Edge Sensor Technology for Advanced Nuclear Detection at CNL **TES Coupled**

Zahra Yamani Canadian Nuclear Laboratories

Wednesday, June 26, 2024

SNOLAB User Meeting 2024 June 26-27, 2024

https://ww

Presentation outline

- **Introduction**
	- **Canadian Nuclear Laboratories**
	- \triangleright Nuclear detection
	- \triangleright Current technologies
- TES detectors
	- \triangleright Nuclear applications of TES detectors (γ -ray, α -particles, neutrons, neutrinos...)
	- \triangleright Principles and operation (advantages and challenges)
	- \triangleright Our work so far
- Collaborative opportunities
- **Conclusions**

Nuclear Detection

CNL Laboratories and Project Sites across Co

- Chalk River Laboratories, Ontario
- Whiteshell Laboratories, Manitoba
- Historic Waste Program, Port Hope, Ontario
- National Innovation Centre for Cybersecurity, New Brunswick
- Prototype reactors and legacy facilities Chalk River Laboratories is the single largest science and technology laboratory in Canada:
	- \sim 9,000 acre site (\sim 200 acre lab complex) with 17 nuclear facilities, 70 major buildings.
	- ~3,100 employees including 1,600 scientific, engineering, and technical staff (expertise in physics, metallurgy, chemistry, biology and engineering, etc.).

earch

CNL origins go back to early 1940s

• ZEEP: 1st reactor outside USA (first M al Ora with final shutdown in 1970) • NRX: a research reactor mnlishments Major accomplishments: begrunden permanent shutdown before permanent shutdown before permanent shutdown begrundet som den begrundet s <u>in 190</u> critical in 1957 and paranently shut down in V Medical isotopes: more than 500 million treatments **VCANDU Industries** V Materials research with neutron beams

W was first

CNL is revitalizing the Chalk River Labor

The ANM research personne decommi is expecte

Canadian Nuclear |
Laboratories Laboratoires Nucléaires Canadiens

CNL Strategic Priorities: Vision

Restore and protect Canada's environment

Conducting the largest and most complex environmental remediation in Canada, spanning three provinces

Clean energy for today and tomorrow

Support CANDU and LWR industry; SMR/vSMR demonstration; advanced fuel and materials; and hydrogen sciences

Overview: Science & Technology at CNL

S&T Directorates

Reactor Fleet Sustainability

Advanced Reactors

Hydrogen and Tritium Technologies | PROJECT OFFICES

Isotopes, Radiobiology & Environment

Safety & Security

Small Modular Reactor Project Office

Isotopes Production Project Office

CNL's Safety & Security

Nuclear Detection, Forensics and Response

- Detection and interception of special nuclear materials in transit.
- Advanced CBRNE threat detection techniques.
- Innovation in safeguards and security required for the deployment of advanced reactors.
- Nuclear forensics signatures and analysis methods.
- Methodologies and support for international nuclear treaties.
- Emerging technologies including quantum (e.g., TES detectors).

Cyber Security

- Cyber security of industrial control systems for nuclear and non-nuclear critical infrastructure.
- A multimillion-dollar cyber security research facility in New Brunswick, including a safe plant display.
- Partnerships with U of New Brunswick, and Canadian Institute for Cybersecurity.
- Created a real-time process control distributed control systems testing platform.
- Used cyber security to examine process environments in real time.

Recent Quantum Technology Developments at CNL

- \triangleright A cross-directorate effort (S&SD and ARD).
- \triangleright Team building (and growing).
- \triangleright Literature review and idea generation.
- Engagements with key stakeholders (e.g., understanding defence's needs and priorities).
- \triangleright Exploring and establishing collaborations (e.g., CNL-Waterloo Quantum Horizon Workshop Oct 30 – Nov 1, 2023).
- Funding from FNST, CSSP, and CNL's LDST streams.
- Developed a CNL road-map for quantum technology development for defence.
- \triangleright Expanding to quantum technology development to space sector. **An initiative spanning multiple Directorates!**

OFFICIAL USE ONLY / À USAGE EXCLUSIF

Superconducting Transition Edge Sensors (TES)

Nuclear detection for safety and security

Areas of importance for nuclear detection:

- \checkmark Defence,
- \checkmark National security,
- \checkmark Nuclear proliferation.

In a variety of settings:

dian Nuclear | Laboratoires Nucléaires Canadiens

- \triangleright Cargo, trucks, cars, boxes, mail/letters, …,
- \triangleright Emergencies / incidents and conflict situations (i.e., theatres of war).

Nuclear detection: current technologies

Radiation relevant to nuclear safety and security:

- \triangleright Charged particles: α -, β -particles,
- \triangleright Photons: γ -rays, X-rays,
- \triangleright Neutrons: uncharged (not directly ionizing, scattering, nuclear interactions and activation).

Detection technologies:

- \triangleright Physical/chemical change in materials: track recording, cloud/bubble chambers, and imaging,
- \triangleright Charge collection: gas filled detectors, ion chamber, proportional counters, semiconductor solid state, Si-based for charged particles, high purity germanium (HPGe) detectors for photons,
- \triangleright Collection of scintillation light: inorganic scintillators (NaI(Tl)), organic scintillators (anthracene, C14H10).

 $LN2-$

Rapid

nucle

signa

 \checkmark Preci

 \checkmark Dete

rugge

 \checkmark In a v

Nuclear isotope detection: y-spectroscopy

Analysis of nuclear materials:

- Example: Uranium samples generally contain U-238, **U-235**, U-239 (& decay products),
- Relative counts • Current non-destructive techniques to determine isotopic composition:
	- γ -ray spectroscopy,
	- α -particle spectroscopy.
- Superconducting *transition-edge sensor (TES)* with S Interferometer Device (SQUID) readout **outperforms** detectors and High Purity Germanium (HPGe) detect

Various γ -ray

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 $\pmb{0}$

verifying ura

50

Nuclear isotope detection: y-spectroscopy

Analysis of nuclear materials:

- 10 eV bin TES detector offers superior resolution compared to conventional semiconductor technology,
- This is advantageous when assessing samples with a high peak density and overlap.
- Low noise (very low operating temperatures).
- TES-based detectors have 10 times greater energy resolution than HPGe detectors!
- Similarly, Si-based α -detectors with 10 keV resolution cannot resolve 240Pu:239Pu, 238Pu:241Am peaks, also 10 times better resolution for TES-based detectors.

 10°

 $10⁴$

 $10³$

 $10²$

НP

 10°

 $10⁴$

 $10³$

96

Microcal counts/10 eV bin

Nuclear applications of TES detectors

TES-based g**-ray,** a**-particle spectroscopy, Coherent-Elastic Neutrino-Nucleus Scattering, (& neutron detectors?):**

- Isotopic analysis,
- Elemental analysis,
- \triangleright Characterizing spent nuclear fuel (treaty verification),
- \triangleright Distinguishing nuclear materials from natural backgrounds (border security),
- \triangleright Nuclear forensics,
- **Spent fuel and reactor monitoring (antineutrino detection).**

IEEE Trans. on Applied Superconductivity, vol. 21, p. 207, 2011.

a-spectroscopy

TES applications we are considering

- \triangleright y-ray spectroscopy: measure several γ energies for a given isotope (favourable for high peak density and overlap samples),
- Ø **Q-spectroscopy**: embed sample in absorber to measure combined energy of all decay products (α , recoil nucleus, X-rays, γ -rays, e⁻) a single energy peak at Q-value (total energy release) for each isotope,
- \triangleright α -particle spectroscopy: measure several α energies for a given isotope (sample preparation is a challenge),
- Ø **Neutrons**: neutron detection/spectroscopy?

OFFICIAL USE ONLY / À USAGE EXCLUSIF M. Stringer, A. Erlandson, V. Anghel, and Z. Yamani Phys. Rev. D 109, 096038 – Published 28 May 2024

Nuclear sp

detect **co**

Sc

Monitoring CANDU spent fuel using TES: a GEANT

 \triangleright Monitoring spent nuclear fuel: crucial to prevent unauthor

 \triangleright Feasibility of using TES-based detectors for monitoring spe

Scenario A: CANSTOR – Fuel Stored in Baskets inside Tubes (Spent Fuel Dry Storage at GENTILLY 2 NGS): One basket holds 1.2 tonnes of spent fuel while one tube 12 tonnes.

Neutrino-based safeguards of CANDU spent fuel using superconducting detectors and the CEνNS interaction

M. Stringer, A. Erlandson, V. Anghel , and Z. Yamani, Phys. Rev. D 109, 096038 (2024); https://journals.aps.org/prd/pdf/10.1103/PhysRevD.109.096038

Sea

Monitoring CANDU spent fuel using TES: a GEANT

- Spent fuel isotopic composition is coupled with isotope neutrino spectra to calculate neutrino emission rates.
- Ø High activity and energy allow CEvNS signal detection for Y-90 isotope.

- \triangleright Multiple or large array detectors to reduce measurement time and improve feasibility.
	- Next: investigate SMR reactor monitoring.

Laboratoires Nucléaires Canadian Nuclear | Canadiens aboratories

for a single

basket).

Measurement

time for removal

of a tube is $\frac{1}{2}$

 $\mathcal{F}_{\mathcal{F}}$

nuclearsafety.gc.ca

Dachground in reactor neutr

Establishing TES detector technology at CNL

Activities conducted thus far encompass:

Setting up low temperature infrastructure and SQUID signal read-out,

Funding acknowledgment: CNL, AECL, FNST, DRDC-CSS.

anadian Nuclear | Laboratoires Nucléaires Canadiens horatories

OFFICIAL USE ONLY / À USAGE EXCLUSIF 20

Z. Yamani et al., 153-120000-REPT-000016 (CNL).

ADR cryostat

Low temperature infrastructure and SQUID read-out for TES detector.

Establishing TES detector technology at CNL

Activities conducted thus far encompass (continued):

- Performing simulations to gain insight and optimize detector parameters (transition temperature, superconductor and absorber materials),
- \triangleright Performing simulations to explore other types of applications (SMR reactor monitoring).

Opportunities for collaborations:

- \triangleright Microfabrication of TES sensors,
- \triangleright Simulations, tests, other applications (imaging?),
- \triangleright Optimization,
- \triangleright Development of field-able prototype.

Challenges in utilization of TES-based detectors in real-world applications: Rotary valve and stand

- More R&D to make TES-sensors, that
	- **Outperform** the existing technologies,
	- Field-deployable (i.e., border, defence).
- Challenges include
	- Very low temperatures are required,
	- Continuous operation must be maintained,
	- Size, weight, and power,
	- Fairly complicated setup and operations,
	- Cost!

lian Nuclear | Laboratoires Nucléaires Canadiens

Thank you! © Merci! ©

zahra.yamani@cnl.ca

Acknowledgements:

M. Stringer, R. Sammon, D. Dean, E. Erlandson, V. Anghel

CNL, AECL, FNST, DRDC-CSS

Questions?