

IBD from \overline{v}_e

• Inverse Beta Decay (IBD) produced by \overline{v}_e :

- Two primary sources of \overline{v}_e on Earth are:

1: Reactor-v

- Long baseline neutrino oscillation.
- Measurement of Δm^2_{21} .

2: Geo-v

- Produced by naturally radioactive elements in the Earth (crust + mantle).
- Study of inner-Earth models!

IBD vs (α , n) Events

- IBD prompt-delayed coincidence eliminates almost all backgrounds ($\tau_n \sim 200 \mu s$).
- Primary correlated background is ¹³C(α, n)¹⁶O:
 - Triggered by α particles from ²¹⁰Po decays capturing on ¹³C inside the detector.

GS ¹⁶0

ES ¹⁶0

(α, n):

 $\alpha \bigcirc +$

 ^{13}C

160

Mimics IBD signature: prompt + delayed n-capture.

¹³C(α -n)¹⁶O prompt events

Proton recoil (PR)

¹²C scattering

¹⁶O deexcitation

IBD vs (α , n) Events

Pulse Shapes

- Liquid scintillator provides almost no directionality information.
- Only use number of PMT hits (N_{hit}) and relative timing/position of these:

PR occur over a longer period.

¹²C

Scintillator Timing

Classifier based on MC simulations.

Simulated pulse shapes sensitive to scintillator emission time for each particle:

$$F(t) = \sum_{i=1}^{n} N_i \frac{e^{-t/\tau_i} - e^{-t/\tau_{\text{rise}}}}{\tau_i - \tau_{\text{rise}}}$$

	$eta \ ext{timing}$							
	i	1	2	3				
-	${ au_i \over N_i}$	$-5.0 \\ 0.656$	$-24.46 \\ 0.252$	-399.0 0.092				
	p timing							
	i	1	2	3	4			
_	$ au_i \ N_i$	$-4.1 \\ 0.523$	$\begin{array}{c} -21.0\\ 0.656\end{array}$	$\begin{array}{c} -84.0\\ 0.252\end{array}$	$-197.0 \\ 0.092$			

• N_i and τ_i are specific to each particle type \rightarrow must be tuned:

β timingproton timingUse tagged in-situ Bi-Po events:Attempting to use
AmBe source:Proton recoils
Capture on H $2^{14}Bi$ $t_{1/2} = 19.9 \text{ min}$
 $\beta^ coincidence tagging <math>\alpha$
 α 210 Pb
 γ (2.2 MeV) Delayed
event $get(\alpha, n)^{12}C$ $get(\alpha, n)^{12}C$

(PR)

Scintillator Timing

- Classifier based on MC simulations.
- Simulated pulse shapes sensitive to scintillator emission time for each particle:

$$f(t) = \sum_{i=1}^{n} N_i \frac{e^{-t/\tau_i} - e^{-t/\tau_{\text{rise}}}}{\tau_i - \tau_{\text{rise}}}$$

•								
	$eta ext{ timing}$							
1	i	1	2	3				
	$ au_i$	-5.0	-24.46	-399.0				
	N_i	0.656	0.252	0.092				
•			p timir	ıg				
-	i	1	p timir 2	ng 3	4			
-	i $ au_i$	1	p timir 2 -21.0	ng 3 -84.0	4			

• N_i and τ_i are specific to each particle type \rightarrow must be tuned:

proton timing

(plots show events sampled from uniform E and R³ distributions)

Pulse Shape Correlations

Pulse shapes are correlated with the event's reconstructed energy E and radial position R non-trivially:

- A likelihood ratio based on averaged PDFs does not capture this:
 - Treats each PMT hit as an independent measurement (Neyman-Pearson lemma) \rightarrow not true.
- The choice of what energy spectrum to draw events from carries assumptions.

Likelihood ratio not optimal.

Use a Fisher discriminant!

Fisher Discriminant

- Reduce dimensionality of dataset: projection to 1-D.
- Finds **projection vector** \vec{a} that best separates two classes of data.
- Details:

• Maximise: $R = \frac{\vec{a}^T B \vec{a}}{\vec{a}^T W \vec{a}}$

"within-class covariance"

"between-class covariance"

- Projection vector \vec{a} that maximises R: $\vec{a} = W^{-1}(\vec{\mu}_{S} \vec{\mu}_{B})$
- Where: $W = \frac{N_S}{N} \Sigma_S + \frac{N_B}{N} \Sigma_B$
- Classify each data-point \vec{x} (event) with: $\mathbf{F} = \vec{a} \cdot \vec{x}$

https://rich-d-wilkinson.github.io/MATH3030/8.3-FLDA.html

Accounts for correlations!

But t_{res} is a 1-D distribution...?

Classifier Tuning

• Construct a vector \vec{x} for each event:

$$\vec{x} = (x_1, x_2, x_3, \dots, x_{n-1}, x_n)$$

Pulse shape and radial position included.
Energy information already included from t_{res}:

$$\sum_{i=1}^{n-1} x_i \approx N_{\text{hit}} \stackrel{\infty}{\simeq} E$$

- Compute \vec{a} from MC simulated events:
 - Sampled from uniform E and R³ distributions.
 - In the ranges expected to be used in analyses E ∈
 [0.9, 3.5] MeV, R³ < 0.9 R_{AV}³.
 - Assume N_{IBD} = N_(α, n) for now (see later).

Classifier won't leverage different E-spectra (unknown a-priori in oscillation analysis)

Almost all t_{res} information + radial position

- $t_{res} \in [-15, 150]$ ns \rightarrow no improvement beyond this
- Bin width: Δt = 1ns → resolution limit, robust to larger binning.
- No improvement from adding E to \vec{x} , as expected.

All events obey: ■ E ∈ [0.9, 3.5] MeV ■ R³ < 0.9 R_{AV}³ R_{AV} = radial position of acrylic vessel

- Simulate (α, n) and various IBD samples from expected "realistic" distributions.
- Apply tuned classifier to these:

- Can **cut 90% of (α, n)**, and only sacrifice:
 - 6% reactor-v IBDs.
 - 11% geo-v IBDs.

Performance is independent of oscillation parameters.

Simulated impact on prompt energy spectrum:

Estimated sensitivity of SNO+ over time (Azimov data):

Extra Notes

and Potential Fine Tuning

Fine-Tuning

- Classifier is for IBDs in general, not tuned for either reactor-v or geo-v spectra.
- Could further slightly refine this classifier for to each case, via two methods:
 - Tune classifier on more "realistic" (α , n) and geo-v/reactor-v spectra \rightarrow not tested yet.
 - Change ratio $\mathbf{r} = \mathbf{N}_{S}/\mathbf{N}_{B} = \mathbf{N}_{IBD}/\mathbf{N}_{(\alpha, n)}$, recall:

$$\vec{a} = W^{-1}(\vec{\mu}_{S} - \vec{\mu}_{B}) \qquad W = \frac{N_{S}}{N}\Sigma_{S} + \frac{N_{B}}{N}\Sigma_{B} \qquad \Longrightarrow \qquad W = \frac{r\Sigma_{S} + \Sigma_{B}}{1 + r}$$

- So far set r=1 (equal weighting of signal and background)
- Can treat r as a hyperparameter, and tune it.

NOTE: Only small improvement potential, useful for higher statistics.

Fine-Tuning

Classifier output is highly correlated with energy:

$$F = \vec{x} \cdot \vec{a}$$
 & $\sum_{i=1}^{n-1} x_i \approx N_{\text{hit}} \lesssim E$

- r is a handle on how much of this correlation is given to the signal vs background.
- Effectively allows tuning of the energy response of the classifier: favour geo-v or rector-v?

FIG. 6. Measured quantities of classified IBD signal and (α, n) background events, taken from uniform energy spectra, with classifiers trained using different values of $r = n_S/n_B$. Subscripts S and B indicate signal and background respectively, while F is the classifier output of an event, and $\rho(\cdot, \cdot)$ denotes the correlation between the two bracketed quantities.

Backup Slides

Grand Unified Neutrino Spectrum

Vitagliano, Edoardo, Irene Tamborra, and Georg Raffelt. "Grand unified neutrino spectrum at Earth: Sources and spectral components." Reviews of Modern Physics 92.4 (2020): 045006.