

IBD from \overline{v}_{e} . Inverse Beta Decay (IBD) produced by \overline{v}_{e} :

 \blacksquare Two primary sources of \bar{v}_e on Earth are:

1: Reactor-ν 2: Geo-ν

- § Long baseline neutrino oscillation.
- \blacksquare Measurement of Δm^2_{21} .

- **•** Produced by naturally radioactive elements in the Earth (crust + mantle).
- § Study of inner-Earth models!

IBD vs (α, n) Events

- IBD prompt-delayed coincidence eliminates almost all backgrounds ($\tau_{\rm n} \sim 200 \mu s$).
- Primary correlated background is ${}^{13}C(\alpha, n){}^{16}O$:
	- Triggered by $α$ particles from ²¹⁰Po decays capturing on 13C inside the detector.

GS 16O

ES 16O

 α \bigodot +

(⍺**, n):**

 13_C

 $16₀$

§ Mimics IBD signature: prompt + delayed n-capture.

13C(⍺**-n)16O prompt events**

Proton recoil (PR)

12C scattering

16O deexcitation

IBD vs (α, n) Events

Pulse Shapes

- § Liquid scintillator provides almost no directionality information.
- **Only use number of PMT hits (N_{hit}) and relative timing/position of these:**

• PR occur over a longer period.

Longer tail in the pulse shape → can classify!

§ Scintillation response of to protons is also different.

Scintillator Timing

- **EXTERGIBIO CLASSIFIER based on MC simulations.**
- § Simulated pulse shapes sensitive to scintillator emission time for each particle:

$$
f(t) = \sum_{i=1}^{n} N_i \frac{e^{-t/\tau_i} - e^{-t/\tau_{\text{rise}}}}{\tau_i - \tau_{\text{rise}}}
$$

β timing proton timing

Scintillator Timing

- **E.** Classifier based on MC simulations.
- Simulated pulse shapes sensitive to scintillator emission time for each particle:

$$
f(t) = \sum_{i=1}^{n} N_i \frac{e^{-t/\tau_i} - e^{-t/\tau_{\text{rise}}}}{\tau_i - \tau_{\text{rise}}}
$$

§ Ni and ⁱ are specific to each particle type → must be tuned:

β timing proton timing

(plots show events sampled from uniform E and $R³$ distributions)

Pulse Shape Correlations

Pulse shapes are **correlated** with the event's reconstructed energy **E** and radial position **R** non-trivially:

- \blacksquare A likelihood ratio based on averaged PDFs does not capture this:
	- Treats each PMT hit as an independent measurement (Neyman-Pearson lemma) \rightarrow not true.
- The choice of what energy spectrum to draw events from carries assumptions.

Likelihood ratio not optimal. Use a **Fisher discriminant!**

Accounts for correlations!

But t_{res} is a 1-D di

Classifier Tuning

• Construct a vector \vec{x} **for each event:**

$$
\vec{x} = (x_1, x_2, x_3, \dots, x_{n-1}, x_n)
$$

§ Pulse shape and radial position included. Energy information already included from t_{res} :

$$
\sum_{i=1}^{n-1} x_i \approx N_{\text{hit}} \propto E
$$

- **Compute** \vec{a} **from MC simulated events:**
	- Sampled from uniform E and $R³$ distributions.
	- In the ranges expected to be used in analyses $E \in$ [0.9, 3.5] MeV, R^3 < 0.9 R_{AV}^3 .
	- Assume $N_{IBD} = N_{(\alpha, n)}$ for now (see later).

Almost all t_{res} information t_{res} + radial position

- t_{res} ∈ [-15, 150] ns → no improvement beyond this
- Bin width: Δt = 1ns \rightarrow resolution limit, robust to larger binning.
- No improvement from adding E to \vec{x} , as expected.

 $E \in [0.9, 3.5]$ MeV R^3 < 0.9 R_{AV}^3 R_{AV} = radial position of acrylic vessel

- Results obey.
- Simulate (α, n) and various IBD samples from expected "realistic" distributions.
- Apply tuned classifier to these:

- 6% reactor-ν IBDs.
- § 11% geo-ν IBDs.

Performance is independent of oscillation parameters.

Results

<u>ж.</u>

Simulated impact on prompt energy spectrum:

Results

Estimated sensitivity of SNO+ over time (Azimov data):

Extra Notes

and Potential Fine Tuning

Fine-Tuning

- **Classifier is for IBDs in general**, not tuned for either reactor-ν or geo-ν spectra.
- Could further slightly refine this classifier for to each case, via two methods:
	- § Tune classifier on more "realistic" (⍺, n) and geo-ν/reactor-ν spectra → not tested yet.
	- **E** Change ratio $r = N_s/N_B = N_{IBD}/N_{(\alpha, n)}$, recall:

$$
\vec{a} = W^{-1}(\vec{\mu_S} - \vec{\mu_B}) \qquad W = \frac{N_S}{N} \Sigma_S + \frac{N_B}{N} \Sigma_B \qquad W = \frac{r \Sigma_S + \Sigma_B}{1 + r}
$$

- So far set r=1 (equal weighting of signal and background)
- Can treat r as a hyperparameter, and tune it.

NOTE: Only small improvement potential, useful for higher statistics.

Fine-Tuning

Classifier output is highly correlated with energy:

$$
F = \vec{x} \cdot \vec{a} \qquad \& \qquad \sum_{i=1}^{n-1} x_i \approx N_{\text{hit}} \propto E
$$

- r is a handle on how much of this correlation is given to the signal vs background.
- § Effectively **allows tuning of the energy response of the classifier**: favour geo-ν or rector-ν?

FIG. 6. Measured quantities of classified IBD signal and (α, n) background events, taken from uniform energy spectra, with classifiers trained using different values of $r = n_S/n_B$. Subscripts S and B indicate signal and background respectively, while F is the classifier output of an event, and $\rho(\cdot, \cdot)$ denotes the correlation between the two bracketed quantities.

Backup Slides

Grand Unified Neutrino Spectrum

Vitagliano, Edoardo, Irene Tamborra, and Georg Raffelt. "Grand unified neutrino spectrum at Earth: Sources and spectral components." *Reviews of Modern Physics* 92.4 (2020): 045006.